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The flow of a rarefied gas in an infinite channel has been studied quite extensively 
(see, e.g., [1-3]). But in reality, channel lengths of finite length have been considered 
in [4-13]. 

The Clausing equation was solved in [4], but this equation is correct only in the free- 
molecular regime. In [5] a correction due to end effects was found for continuum flow. Us- 
ing the results of [5] and taking into account slip, a formula was obtained in [6] for arbi- 
trary Knudsen number. But in the free-molecular regime this formula disagrees significantly 
with the results given in [4]. In [7] an empirical formula was obtained for the flux of 
gas in a finite circular capillary for arbitrary Knudsen number and arbitrary channel 
length. Nearly free-molecular flow regimes were considered in [8, 9]. In [i0] a solution 
was derived using the BGK equations and the moment method; here the distribution function 
is represented as a linear combination of four Maxwellian distributions. A simple analyti- 
cal formula for the flux was obtained, which reproduced the numerical results found in [I0] 
to within an error of 10% for the case when the ratio of channel width to height varied from 
6 to 0.5, the Knudsen number varied from 5 to 0.5, and the ratio of pressures at the ends 
of the channel varied from 0.8 to 0.i. Unfortunately the numerical results calculated in 
[i0] were not presented in the paper. 

Flow in a plane and circular channel of finite length were considered in [Ii] and [12], 
respectively. The following simplifying assumptions were made: the density gradient along 
the channel was constant, and the velocity in the channel had only a longitudinal component 
depending only on the transverse coordinates. These assumptions are valid only for suf- 
ficiently long channels. The same assumptions were used in [13] in a study of the noniso- ~ 
thermal motion of a gas in a plane channel. Therefore the flow of a gas in a finite channel 
has been considered either for a restricted range of Knudsen numbers or using assumptions 
which are correct only for long channels. 

In the present paper we consider the flow of a gas in a plane channel of finite length 
on the basis of the linearized BGK equation and the moment method. Unlike [Ii, 12], here 
no assumptions about the flow field are made, and hence we can take into account the varia- 
tion of the velocity profile and the nonlinear dependence of the density on the longitudinal 
coordinate near the ends of the channel. The integral equations are solved numerically us- 
ing the Krylov-Bogolyubov method. In the case when the channel length is much larger than 
the mean free path of a molecule, we can find a simple relation between the flux of gas in 
a finite channel and the flux in an infinite channel at the same Knudsen number. 

i. We consider the steady flow of a gas between two parallel, infinitely wide plates 
forming the planes y = ~a and having length E along the flow. The two vessels joining this 
channel contain the same kind of gas at the same temperature T, but at different densities 
nl and n2, as shown in Fig. i. Because of the density difference, the gas moves along the 
x-direction. 

We introduce the scales u~ nl, ~ = (2RT) I/2, n1~ -3/2, NI = n~mvll/2 for length, density 
n, velocities c and u, distribution function f, and viscosity ~, respectively. Here R is the 
gas constant; m is the mass of a molecule; v = (8RT/~) I/2 is the thermal velocity of the 
molecules; 11 is the mean free path of a molecule in the first vessel. All expressions be- 
low will be written in these units. 

We assume that the density difference is much less than the average density IAnl = 
in2 - 11 << I, the reflection of molecules from the walls is diffuse, and that the molecules 
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entering the channel from the two ends have a Maxwellian distribution function: 

x = 0 c x ~ O, I = 1: = ~-3/2 exp (--ce),  

x = L c~ ~ O, / = f i  = n~l l  ( L  = l /a) .  

T h i s  m e a n s  t h a t  t h e  v a r i a t i o n  o f  t h e  d i s t r i b u t i o n  f u n c t i o n  n e a r  t h e  l e f t  e n d  o f  t h e  c h a n n e l  
is not taken into account (as in [10-12]). Therefore our results will be valid only for 
sufficiently long (but finite) channels. The effect of the intake region on the flux of 
the gas will be estimated below. We note that the formulation of the problem given here 
correctly describes the transpiration of gas from one end of the channel to the other, which 
is a case of practical interest. It was shown in [10] that the deviation of the tempera- 
ture of the gas in the channel from the equilibrium value, and the effect of this devia- 
tion on the flow parameters does not exceed 0.5%, and therefore the temperature can be as-:,~ 
sumed to be constant in the entire flow field. 

The BGK equation for the distribution function is used as the starting point. It has 
the form 

e a t / O r  = 6(jr o - -  t ) ,  ( 1 . 1 )  

where 8 = ~a/2~i is the reciprocal of the Knudsen number; 

? (r, e) = n (r____~) exp [ - -  (e - -  u(r))~]; 
~ 3 / 2  

-<,>: f I<,, o) 
- - c o  

c is the velocity of a molecule; r = r(z, y). 

Because the density difference is small, the unknown distribution function can be repre- 

sented as 

jr(r, c) = / : [ l  ~--h(r, e )An] .  ( 1 . 4 )  

Then from the definitions (1.2) and (1.3) 
+oo 

n(r)=:  
_~ (1.5) 

= q,(r):n, +,(r)= j S : e)c=de, 
- -oo  

--oo 

Substituting (i.4) into (i.i), it is straightforward to obtain a linearized BGK equation, 
and integration of this equation along the characteristics gives an expression for the per- 

turbation function 
s O 

0 

r r where s = Ir - _ [; Cp is the projection of the velocity c onto the xy-plane; s o is the 
distance between the observation point and the boundary of the flow field in the direction 
cp (see Fig. i); h 0 is the perturbation function of the molecules emitted from the boundary 
with velocity Cp to the point of observation. According to the above assumptions and the 
condition that the gas cannot penetrate the walls of the channel, we have for h0 

%<>0 ( 1 . 7 )  
ho I ~ = •  = q ,  ( x )  = - f ~ . i i 1 ~  ~e" 

cy~o 

The reduced number of molecules n w incident per unit time on a unit area of the wall is related 
to q~ by nw(X) = i + q,(x)An. Substituting (1.6) into (1.2), (1.3), and (1.7), we have a 

system of integral equations 
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P q 

Fig. 1 

Here 

L 1 3 

qi(x, Y ) =  .1' ,l E K~(x,  y ,x;  g")q~('x', y ')dy'dx'  + 
0 --1 3 = 1  

L 

+ j 'K . (x ,  y, x')q,(x')dx' + ~,(x, y), 1 <~ i~3 ,  
0 

L 1  a 
q4 (x) = ;I -~11 ~=IE Kai (x, x',  g') qi (x', 

6 ~ i o  (6s); KI~ 8 K n =  ~ = ~- 

KI~ = -h-- 11 (6sl)(1 + Y) + ~--7 
2 

L 

g') dg'dx' + ,t" K4~ (x, x') q~ (x') dx' + (I)a (x). 
0 

l ,  (~s)(x - -  z ' ) ;  K~ = -f 711 @)(Y--Y'); 

JK_5~ [1 (~s~)(t - y )  ; 3 , -  - 7  7 z,(as) (x - . ' ) ;  

2 f2(6s)(x "2 ~ 2 K ~  . ~ - - x ) ; g ~  . ~ z ~ @ ) ( x - - x ' ) ( y - y ' ) ;  

K , ,  = -7t  [ _ ~ . i  2 ( S s i ) ( l + y ) ( x -  x ' ) +  ! a  I~ (Ss~)(l -- y)(x -- x')~; 
$2 J 

K s z =  (5 t I~ (Ss ) (y - -y ' ) ;  Ka2 tt 2 i 2 ( 6 s ) ( x _ x , ) ( y _ g , ) ;  
$2 ~ 83 

tc  - ~ ~ 4  ' ~  ~ ~ 4 ( % ) ( 1 + y ) ~ -  z ~ @ ~ ) ( t - y ) ~  ; ~ - -  -7- (6s) (y - -  y ) ; g~4 = -~ _-7 
$1 

, .  ~ 4 z~ (~s~) (1 + y') ( x -  x3;  K, ,  = ]/-~ s~ fi'~ 2"~I*(6sa)(i  q- y )' K'2 "V~ %a 

8 t I~ (&4); 
Kaa = -V~ sa 

1 

~i  (--t)i  y ( t ~ i ~ - ~ 3 ) ;  
--1 

1 

= _-Tg I2 (5s5) (t -}- y') (L -- x) dy', 

s = [ ( x - -  x ' )  ~ + (y - -  y ' ) ~ y " ;  sl = [(x - -  x ' )  2 + (t  + yf.lu,~; 

s 2 = [(x - -  x') 2 -[- (1 --  y)211/2; Sa _-- [(x - -  x') 2 -k (1 -k y,)2]l/z; 

s, = [4 + (x - -  x')~]~/~; s~ = [(L - -  z) ~ + (1 + y')~ll/~; 
oo 

0 

( 1 . 8 )  

2. We chose the Krylov--Bogolyubov method [14] to solve this system of integral equa- 
tions. The segment [0, L] is split up into k intervals [xs xs (Z = I, 2 .... , k), 
where x0 = 0, x k = L, and the segment [-i, i] is split up into n intervals [Ym-1, Ym] (m = 
i, 2 ..... n), where Y0 = -i and Yn = i. Then the system of integral equations (1.8) 
transforms into a system of algebraic equations 

z~ rc-z~p~ p~ ,-~-z~ p - -  . ~ , ~  ( l  ~ i ~ <  3 ) ,  q~. : - ~ i j  qj + IM~ q4q-u ' i  ( 2 . 1 )  
q~ = rTlps ps  rz lp  p l ~4J qj q- A44q~ + fD~. 
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Here on the right hand sides of these equations a summation is understood over repeating 
upper and lower indices, and we have adopted the notation: 

Xp Ys 

xp--1 Ys--1 
Xp Xp Ys 

, ,  = K~ , (x~ ,  g~,  x ' )  d x ,  .~ , j  = 
Xp--1 Xp--1 Ys--1 

% 

KI = J' K.(x,,z'ldx', 
Xp--1 

xz-~ < xz < xz, ym-1  < ym < g,~. 

In  v iew of  t h e  symmetry  o f  t h e  problem and t h e  f a c t  t h a t  i t  i s  l i n e a r ,  t h e  f u n c t i o n s  q i  
have  t h e  p r o p e r t y  

ql(x, y) := ql(x, - - y )  --= t - -  q,(L - -  x ,  y) ,  ( 2 . 2 )  

q2(x, y ) =  q~(x, - - y ) =  q 2 ( L -  x, g), 

qa(x, g) = --q3(x, - - y )  = qa(L - -  x, y), q~(x) = t - -  q4(L - -  x),  

and use of this property allows one to reduce the order of the system of algebraic equa- 
tions (2.1) by a factor of four. 

The system (2.1) was solved by the Gauss-Seidel iteration method. It can be shown [15] 
that the necessary and sufficient conditions for the convergence of the scheme are satisfied 
for the range of ~ considered here. The calculations were done numerically on a computer. 

3. In the case when the channel length is much greater than the mean free path of a 
molecule (6L >> i), the flow field near the ends is similar for fixed 6 and different L. This 
similarity means that we can eliminate the calculation of cases with large values of 6L" To 
prove the similarity, we consider the flow of a gas in a semi-infinite channel whose end lies 
in the cross section x = 0, where the flow is due to a small constant density gradient v = 
8m~/Sx in the limit x + =. Obviously at infinity (x + ~), the flow field will correspond 
to flow in an infinite channel with the same density graident v. 

The boundary condition at x = 0 is taken to be the same condition as that for the left 
end of the finite channel. The problem can then be linearized in the parameter v, i.e., 
the distribution function f~ can be represented in the form f~ = f1[l + h~( r~ e)~]. The 
moments of the distribution function are written as 

n~(r) = i + pl~)~, ux~( r )=  p2(r)v~ (3.1) 
n ~ ( x )  --  I @ p4(x)~, uy~(r) = p~(r)~. 

Here the functions pi(r) (i ~ i < 4) are determined in exactly the same way as the functions 
qi(r).The corresponding moments of the distribution function in the left half of the finite 
channel (for the same value of 6) will approach (3.1) as the length of the channel increases 
if 

On] _ Oq, ] ( 3 . 2 )  
v(6, L) = OX[x=L/2---~u 

In other words, there always exists a channel length, such that the following relation is 
satisfied for the left half of the channel (to within the approximations assumed here and 
subject to the condition (3.2)) 

q~(r, 6~ L ) A n =  p~(r, 6)v(6~ L)~ i<~. i~<4 .  ( 3 . 3 )  

Suppose we know the flow field qi(r, 6, L*) for a channel length L# for which the flow in 
its central part corresponds to flow in an infinite channel with the density gradient 9(6, 
L*) (to within the accuracy of the calculation). Then using (3.3), the flow field in a 
channel of arbitrary length L > L* in the region 0 < x S L*/2 can be expressed in terms of 
qi(r, 6, L*) as follows: 

q~(r, 6, L ) =  ~(5'~!)qi(r,  6, L* ), I~i~4. (3.4) ~(~, 
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In the region L*/2 < x 5 L/2, the flow field corresponds to an infinite channel, and there- 
fore the functions qi are given by 

ql(r, 5, L ) = q ~ ( x ,  5, L ) v(6, L)(An x - - % ) t +  =2-' ( 3 . 5 )  

( -  ) q2(r, 5, L ) = q 2  x = y , y ,  6, L , q3(r, 6, L ) = 0 .  

We n o t e  t h a t  in  v i ew  o f  ( 3 . 2 )  t h e  r a t i o  v ( 6 ,  L ) / S n  i s  i n d e p e n d e n t  o f  An. T h e  f l o w  f i e l d  
f o r  L /2  5 x 5 L i s  c a l c u l a t e d  f rom ( 2 . 2 ) .  

To f i n d  a r e l a t i o n  be t ween  9 ( 6 ,  L) and ~ (6 ,  L*) ,  we u s e  t h e  f a c t  t h a t  b o t h  o f  t h e  r e l a -  
t i o n s  ( 3 . 4 )  and ( 3 . 5 )  a r e  c o r r e c t  f o r  t h e  c r o s s  s e c t i o n  x = L* /2 .  E q u a t i n g  t h e  r i g h t - h a n d  
s i d e s  o f  t h e s e  r e l a t i o n s  f o r  q t  and u s i n g  t h e  f a c t  t h a t  q l ( x  = L * / 2 ,  y ,  6, L*) = 1 /2 ,  i t  
is not difficult to obtain 

An L An L*. ( 3 . 6 )  
~(6, L) ~(8, L*) 

The quantity of most interest in practice is the flux of gas through a cross section 
of the channel. It can be determined using the formula 

1 1 

Q = ~-~ u~(x, y)dy = ~- q~(x, y)dy. ( 3 . 7 )  
- -1  - -1  

Substituting (3.4) for q2 into (3.7) and using (3.6), we have 

L Q = L-%-X7 Q~; (3 .8 )  

1 

Q~ = 2~ (~, L*) q~(x, y, 5, L*)dy; ( 3 . 9 )  
- -1  

AL = An L*. (3.10) 
~(6, L*) 

Since the flow field in the central part of a channel of length L* corresponds to flow in 
an infinite channel with the density gradient v(6, L*), Q~ by definition [3] corresponds 
to the reduced flux in an infinite channel. The quantities Q~ and AL do not depend on the 
channel length and can be determined by calculating the flow field for L* and using the 
equations (3.2), (3.9), and (3.10). 

Therefore the flow field calculated for L* using (3.4) through (3.6) and (3.8) can be 
used to find the flow field and flux of gas in a channel of any length L > L*. The calcu- 
lations show that, to within an error less than 2%, the necessary condition for the applic- 
ability of these formulas is 6L > 40. 

4. In Fig. 2 the solid curves give the dependence of the gas flux Q on the reciprocal 
of the Knudsen number. The error in the calculations is less than 2%. The accuracy of the 
calculation is determined by comparing the values of the flux for different numbers of grid 
points in both coordinates x and y. In every case the variation of the flux in different 
cross sections of the channel is within the accuracy of the calculation. Inthe free-molecu- 
lar regime (6 = 0), the results of the calculation agree with the data of [4], since in this 
case the four equations of (1.8) reduce to the Clausing equation. 

For comparison, the results of [Ii] are presented in Fig. 2 (dashed curves). Large 
discrepancies are observed over the entire range of Knudsen numbers. The authors of [II] 
themselves noted the deviation from the exact solution in the free-molecular regime. The 
discrepancy in the intermediate and viscous regimes can be explained by comparing the density 
fields. 

It was assumed in [ii] that the density is constant in each cross section of the channel 
and varies linearly from n I to n 2. In the present paper the density was calculated. Figure 
3 shows the dependence of the function ql (related to the density by the first equation of 
(1.5)) on the longitudinal coordinate. Curves 1 and 2 correspond to L = 4 and i0, 6 = i0 
and 4. The solid curves correspond to the density near the channel wall, the dashed curves 
correspond to the center of the channel, and the dash-dotted curve to the flow field assumed 
in [Ii] for all channel lengths and Knudsen numbers. 
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TABLE 1 

t 

6 Q~ [3] 

10 
4 
2 
1 
0,4 
0,2 
O,i 

L* AL Q~ 

t~ t8,8 4,37 
10,t 2,4i 

20 7,47 t.83 
40 6,46 t15o 

t00 7,t4 t,54 
200 t0,6 t,63 
400 i2,6 i,80 

4,40 
2,4472 
i,8440 
t,5942 
i,5482 
t,6408 
i,8075 

4 

r 

5 , 2 60 
x 2 3 20 

J 

/ 

o ~a o,4 x/L 

Fig. 2 Fig. 3 

We see from Fig. 3 that in the left portion of the channel the gas density is not con- 
stant over a cross section of the channel and varies nonlinearly along the channel. The 
density at the end of the channel (x = 0) is not equal to n I. This is explained by the fact 
that at x = 0, a Maxwellian distribution function fl was specified for the ;ight half of 
velocity space. The distribution function for the left half of velocity space is found from 
the solution of the kinetic equation and in general is not the same as fl- When moments 
of the distribution function are calculated at the end of the channel over the entire velocity 
space, a density is obtained which is different from nl. 

In the central portion of the channel, the density gradient is constant but it is 
significantly smaller than the density field assumed in [Ii]. For example, with 6 = 4, L = 
10 (curve 2) the ratio of these two gradients is approximately equal to two. The fluxes 
also differ by about a factor of two in this case. Hence the density field assumed in [ii] 
leads to large errors over the entire range of Knudsen numbers. 

The gas flux for 6L ~ 40 was calculated using (3.8). Table i gives the values of AL 
and Q~ for several values of 6. In the second column we give the minimum length for which 
(3.8) is valid, within the accuracy limits of the calculation. For comparison, we give in 
the fifth column the reduced flux in an infinite channel Q~ obtained in [3] upon conversion 
of the number 6 into our length scale. For 6 = i0 we compared our results with [13], since 
calculations were done in [3] only up to 6 = 5. We see that the differences from the re- 
sults of [3] are within the computational error. 

We note that AL is comparable to and may exceed L* for large values of 6. This means 
that the flux calculated from (3.8) may be several times smaller than the flux in.an infinite 
channel. The data in Table 1 can be used to estimate the channel length for which the error 
due to end effects is smaller than a given value. Estimates of this kind are essential in 

experimental design. 
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5. One would expect that the effect of the intake region on the gas flux would be a 
maximum for the viscous flow regime. To estimate this effect the total resistance of the 
channel L/G t is written as a sum (as done in [6]) 

L/G ~ L /G 4- l/Go, ( 5 . 1 )  
t 

where G t is the reduced flux in a channel with the effect of the intake region taken into 
account; L/G is the resistance of the inner part of the channel; I/G 0 is the resistance of 
the intake region. Using this relation, it is simple to obtain an expression for the rela- 
tive difference between G t and G: 

y = ( G - -  G ~ /G t - t 0 0 ~  = G / G o L . t O 0 ~  . ( 5 . 2 )  

The value 1/G 0 is comparable to the resistance of an infinitely thin slot; the flux 
through a channel of this type was found in [16] for the case of a continuous medium and 
is given by G o = ~/16. Substituting the value of G from the present paper and the value 
of G o from [16] into (5.2), we obtain ~ = 8, 6, and 3% for the channel lengths L = i0, 20, 
and 60, respectively, at 6 = i0. The effect of the intake region becomes less significant 
as the number 6 decreases. 
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